Cohen-Macaulay local rings with e2 = e1 − e + 1
نویسندگان
چکیده
In this paper we study Cohen-Macaulay local rings of dimension d, multiplicity e and second Hilbert coefficient e2 in the case e2=e1−e+1. Let h=μ(m)−d. If e2≠0 then our can prove that type(A)≥e−h−1. type(A)=e−h−1 show associated graded ring G(A) is Cohen-Macaulay. next when type(A)=e−h determine all possible series A. depthG(A) completely determines Series
منابع مشابه
Local Rings of Finite Cohen-macaulay Type
Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...
متن کاملOn Cohen-Macaulay rings
In this paper, we use a characterization of R-modules N such that fdRN = pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the dth local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R.
متن کاملDirect-sum decompositions over one-dimensional Cohen-Macaulay local rings
1 Alberto Facchini, Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Belzoni 7, I-35131 Padova, Italy, [email protected] 2 Wolfgang Hassler, Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstraße 36/IV, A-8010 Graz, Austria, [email protected] 3 Lee Klingler, Department of Mathematical Sciences, Florida Atlanti...
متن کاملSome remarks on generalized Cohen-MacAulay rings
We consider the possibility of characterizing Buchsbaum and some special generalized Cohen-Macaulay rings by systems of parameters having certain properties of regular sequences. As an application, we give a bound on Castelnuovo-Mumford regularity of so-called (k, d)-Buchsbaum graded Kalgebras.
متن کامل0 on Cohen - Macaulay Rings of Invariants
We investigate the transfer of the Cohen-Macaulay property from a commutative ring to a subring of invariants under the action of a finite group. Our point of view is ring theoretic and not a priori tailored to a particular type of group action. As an illustration, we briefly discuss the special case of multiplicative actions, that is, actions on group algebras k[Z n ] via an action on Z n .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.07.037